TRAnsformative DESign (TRADES) Proposers Day

2016-05-13

- 8:30 -9:00 Defense Sciences Office (DSO) Overview: Bill Regli,
 DSO Deputy Director
- 09:00-09:15 Contract Management Office Brief: TRADES BAA Process;
 Michael Mutty, TRADES Contracting Officer
- 09:15-10:00 TRADES Overview: Jan Vandenbrande; TRADES Program Manager
- 10:00-10:15 Break
- 10:15-12:00 Proposer Capabilities Session
- 10:15-12:00 Government breakout
- 12:00-12:30 FAQ Answer session with attendees and government

TRAnsformative DESign (TRADES) Overview

Jan Vandenbrande PM/DSO

TRADES Proposers Day 2016-05-13

DARPA TRADES Proposers Day Objectives

- Present TRADES BAA to community convey expectations for program
 - Final briefing to be posted to the DSO Opportunities page on DARPA.mil
- Promote collaboration and team forming through performer presentations
- Answer questions from attendees
 - Note cards passed to attendees, please write any questions on note card
 - If participating online, please email questions to TRADES@darpa.mil
 - Questions collected at 10:15 am
 - Initial responses discussed at 12:00 pm
 - FAQs will be posted to the DSO Opportunities page on DARPA.mil
 - Additional can be submitted to <u>TRADES@darpa.mil</u> following Proposers Day

DARPA Theme: How to design & build better and faster

Where I am coming from:

- **Undergrad:** Vrije Universiteit van Brussel
 - Electrical Engineering : $F(x) \rightarrow Embodiment$

 - Math matters
- **Graduate:** University of Rochester
 - Solid modeling: Laying the foundations of CAD
 - Thesis: Automated machining feature recognition
- **Unigraphics** (Siemens NX)
 - Metal machining
 - Advanced concepts
- **Boeing** (Applied Math)
 - 90s: Automated machining planning
 - 00s: Improve Boeing's design methods
 - 10s: Composite manufacturing

What's New: DARPA DSO PM

- Goal: Solve major gaps observed in design
- Initial effort: Transformative Design (TRADES) Program

DARPA TRADES Objective

Transform design by exploring new math/algorithms to:

- (1) Harness the tidal wave of new materials and fabrication methods that are coming our way, and
- (2) Enable new designs that are unimaginable today.

Composites

Personal picture

https://annual.llnl.gov/annual-2014/science

Multi-materials

Gupta@UMD http://www.enme.umd.edu/~skg upta/InMoldAssembly.htm

Negative thermal expansion

Super light weight structures

Conventional design processes are highly reliant on human expertise and legacy systems

Typical design process:

Challenges with advanced materials & manufacturing:

Synthesis Design complexity exceeds human capacity

Modeling Systems are not scalable to accommodate shapes with material

Analysis Lack of interoperability and accuracy limits exploration

Design innovation is limited by human insight and lack of support from the design tools

DARPA Humans have limited capacity to reason in higher dimensions

Source: Simpson, AIAA 2005-2060

DARPA We have reached the limits of our design tools

> 100,000 GBytes

RAM on most PCs: 8 GBytes

Interoperability hinders exploration

- Frequently requires human participation
- Conversion expert driven
- Results operator dependent

Consequence of limited human insight and lack of support from the design tools

Agnes Blom @ TU Delft

Enabling computers to manage the complexity that humans cannot

TRADES Vision: Computers are partners throughout the design process

TRADES will enable us to explore and discover entirely new designs

TRADES will explore and integrate new ideas

FA1: Modeling: Efficiently describe shape, material and their variations

Explicit
Data centric
≤3D

Embedded physics?
Multi-resolution?
Functional/Generative?
≥3D?

FA2: Analysis: Compute physical properties directly & reliably

Discretization Finite element analysis

Direct analysis? Query based methods?

FA3: Synthesis: Generate and find the best designs

Record

Optimization & Uncertainty?
Design as coding?
Evolutionary?
Machine learning?
Data analysis?

DARPA Focus Areas 1: Modeling

- Shape + topology + material + variability
- Scale span: ~0.01 mm to 100 m
- Support efficient computations
- Support modeling/editing operations
- Support generation of fabrication instructions
- Seamless interoperability with downstream processes

DARPA Focus Areas 2: Analysis/Computations

- Compute integral and differential properties of FA1
- Analyze/simulate with minimal or no conversion
- Propagate variability
- Maintain precision
- Speeds ≥ SOA
- Downstream needs: sensitivities

Mass? Thermal?

DARPA Focus Areas 3: Synthesis

- Generate coupled shapes and materials given multiphysics and limits of fabrication technology
- Trade shape vs material variability
- Explore alternative design synthesis approaches
 - Generates optimized designs given requirements
 - Provide the seeds (species) for optimization (MDO)
- Find promising designs in complex design spaces
- Will it scale? How much?
- Leverage FA1 and FA2

What can we learn from animation?

Animation provides some insight on how to deal with scale and complexity

Can topology optimization (TO) under uncertainty (UU) compensate for variability?

How can we jump species to find radically new designs?

DARPA How do you debug a "design"?

- Debugging designs captured in a system is hard
- However, we have 60+ years experience debugging computer programs...

What can we learn from this?

```
rrom wing import wingclass, wingbox
    from Cowl import CowlClass
    from Fuse import Fuselage
    class BCA797 ( Rules ):
        def init (self, fuse length = 2867.2):
GEODUCK
            Rules. init (self)
            self.fuse length = fuse length
            self.fuse width = .1 * fuse length
            self.fuse height = .1 * fuse length
            self.constant length = .5 * fuse length
            self.nose sharpness = 1.0
            self.tail sharpness = 1.0
            self.nose length = .1 * fuse length
            self.fuse x offset = .03 * fuse length
            self.fuse z offset = .06 * fuse length
```

How do you fix this?

What TRADES is not!

System of Systems

New materials development

New fabrication tools

https://www.youtube.com/watch?v=8bml2pK6Ra0

Program structure

TA1: Design Technologies

- Multiple performers
- Teaming
- Focus areas:
 - 1. Modeling
 - 2. Analysis/Compute
 - 3. Synthesis
- Propose 1, 2 or all 3
 - Interoperate?
- Generality
 - If not: Interoperate?

TA2: Design Testbed

- Single performer
- Common dev platform
- HPC/GPU
- Prototype ideas
- Collaborate/share
- Integration/interoperability
- Exemplar problems
- S/W Resources

- Exemplar problems (EP) and metrics to evaluate progress
- Government partner to validate and verify performance

End goal is to enable designers to leverage investments in:

- Additive processes
- Layered structures
- Graded materials

- Weaving processes
- Micro truss structures
- Traditional materials

Draft exemplar problems

Aim is to exercise different aspects of TRADES, not get locked into 1 physics

Represent, manipulate, and compute properties of a 1 m³ volume made of .01 mm micro-structures

Synthesize material composition and shape of solid rocket propellant to achieve a given thrust profile

Fit a 1MV voltage multiplier in a .1 m³ space using graded materials to power the ICONS neutron generator

DARPA Notional program metrics to measure success

TRADES notional program metrics:

- Modeling, complexity, and response speed assessed against industry standards using nominal HPC cluster
- Multi-physics, interoperability and required computer-human interaction assessed against state of the art design tools

Program Metric	State of the Art	Threshold	Objective
Usable level of detail in physical scale difference	≤10 ⁵	>106	>108
Object complexity (Shape + Material)	No material, 10^5 to 10^9	>1012	>1015
Computational efficiency (e.g., Simulating high fidelity physics)	Hours to weeks	minutes	seconds
Computer-human interaction	Experienced (> 10 yrs) professional required to generate and model non-trivial design solutions	Semi- professional required	Non-professional
Multi-physics design	Indirect through design-test	Sequential	Coupled
Material architecture and shape generation for multi-physics challenge problems	Does not exist	>2 Physics	>3 Physics, with uncertainty
Interoperability	Manual intervention	Automated	Direct

DARPA Schedule and structure

Single phase, 6.1, 48-month program

Deliverables:

- New math, algorithms and computer representations
- A testbed, community and collection of validated exemplar problems
- Novel techniques for interaction and design space exploration

TRADES Proposal Process

BAA Publish	5/11/16
Proposers' Day	5/13/16
Abstracts Due	6/1/16 4:00pm EST
Teaming Profile Due Date	5/16/16
Expected Abstract Responses	6/27/16
FAQ Submission Deadline	7/19/16 4:00pm EST
Proposals Due	7/26/16 4:00pm EST

How we think: The Heilmeier Catechism

Important questions to consider when approaching DARPA with ideas:

- What are we trying to do? (no jargon!)
- How does this get done today?
- What is new about your approach?
- If we succeed, what difference do we think it will make?
- How long do we think it will take?
- Can we transition (to the DoD or others)?
- How much will it cost?

Heilmeier
Source: Wikipedia.

DARPA TRADES Review and Selection Process

- DARPA will conduct a scientific/technical review of each conforming proposal
- Proposals will not be evaluated against each other since they are not submitted in accordance with a common work statement
- TRADES proposals will be evaluated against three criteria
 - Overall Scientific and Technical Merit
 - Potential Contribution and Relevance to the DARPA Mission
 - Cost Realism
- Detailed description of each criterion can be found in the TRADES BAA

